
An Extended Point-Area
Deconvolution Approach for
Assessing Drug Input Rates

Kuang C. Yeh,1,2 Daniel J. Holder,1

Gregory A. Winchell,1 Larissa A. Wenning,1 and
Thomayant Prueksaritanont1

Received July 5, 2001; accepted July 10, 2001

Purpose. To describe an extended point-area deconvolution ap-
proach for evaluating drug input rates based on the application of
piecewise cubic polynomial functions.
Methods. Both the nonimpulse response data and the impulse refer-
ence data were independently represented by the piecewise cubic
polynomials to obtain interpolations, numerical integration, and re-
duced step size for the staircase input rates. A moving average algo-
rithm was employed to compute the input rate estimates. The method
was illustrated using data from preclinical and human studies. Simu-
lations were used to examine the effects of data noise.
Results. In all cases examined, the piecewise cubic interpolation func-
tions combined with the moving average algorithm yielded estimates
that were reasonable and acceptable. Compared to the standard
point-area approach based on the trapezoidal rule, the present
method resulted in estimates that were closer to the expected values.
Conclusions. The point-area deconvolution analysis is one of the
preferred approaches in assessing pharmacokinetic and biopharma-
ceutic data when it is undesirable to assume the functional forms of
the input processes. The present method provides improved perfor-
mance and greater flexibility of this approach.

KEY WORDS: point-area deconvolution; drug release; pharmaco-
kinetics; biopharmaceutics; piecewise cubic interpolants; numerical
integration.

INTRODUCTION

In a recent publication, a modified point-area numerical
deconvolution procedure was used to investigate the kinetics
of metabolite formation (1). A large number of different com-
putational algorithms have been developed and used in the
analysis of drug input rates in pharmacokinetic and biophar-
maceutic studies (2–16). A general approach has been to as-
sume an appropriate function for the plasma concentration
data after intravenous administration and another for the in-
put rate. The unit impulse response data after an i.v. admin-
istration are often represented by polyexponential functions.
And the input functions are represented by polyexponentials,
polynomials of various degrees, or other appropriate smooth-
ing functions with adjustable parameters. The convolution of
the two functions yields the nonintravenous response func-
tion, and the parameters are solved by nonlinear iterative
regression analysis of the nonintravenous plasma data.

One of the alternative approaches that does not require
predefined input functional form and the subsequent regres-

sion analysis is the point-area method based on the staircase
input function (12–15). In this approach, the input rate is
assumed to be piecewise constant within each sampled inter-
val. The intravenous concentration data either are integrated
numerically using the linear or log-linear trapezoidal rule, or
are fit to polyexponential functions and integrated analyti-
cally. In actual practice, the sampled intervals are likely to be
relatively large, and the input rate may vary substantially
within such intervals, leading to large errors that are not rep-
resentative of the system.

To reduce the inherent sensitivity of the point-area
method to such errors, a modified procedure was developed
to compute the drug input rates. It is the purpose of this paper
to describe the application and limitations of the present
method in the deconvolution analysis of pharmacokinetic and
biopharmaceutic data.

METHODS

Deconvolution techniques have been well documented.
Briefly, in a linear and time-invariant disposition system, the
response function g(t) is related to the input rate function r(t)
and the unit impulse response c(t) by the following:

g(t) 4 r(t) * c(t) (1)

or

g~t! = *0

t
r~t!c~t − t!dt (2)

where * denotes the convolution operation. In the present
context, c(t) generally represents the plasma concentrations
following an i.v. bolus administration of a unit dose, g(t) rep-
resents the corresponding concentrations following an oral or
nonintravenous dose, and r(t) is the drug input rate into the
systemic circulation. The rate is expressed in fractions of the
unit i.v. impulse dose per unit time. In Eq. 2, t − t is the time
lapsed between the time t at which the drug input takes place
and the time t (t $ t) at which the response g(t) is observed.
The response g(t) is, essentially, a summation of the products
of the input rate and the time-shifted impulse response. As an
inverse operation to convolution, the deconvolution allows
one to obtain estimates of the input rate function r(t) based
on the observed c(t) and g(t) data.

In the present work, the step-size of the staircase input
function is reduced to equal a fraction of the sampled time
interval following nonintravenous administration. A piece-
wise cubic interpolation algorithm (17) is applied to obtain
the interpolated values for the nonimpulse and unit-impulse
response data. The point-area method is applied to obtain the
cumulative input rates, followed by a moving average numeri-
cal differentiation algorithm to obtain the absorption rates at
the observed time points.

Staircase Input Rate

Dividing the time interval [0,t] into (j − 1) sufficiently
narrow subintervals such that within each subinterval hk (hk

4 tk − tk−1, k 4 2, 3, . . . , j), the input rate rk is approximated
to be constant. Under such approximation conditions, Eq. 2
can be written as:
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gj ≅ (
k=2

j

r̄k *tk−1

tk
c~tj − t!dt, j > 1, t1 = 0, g1 = 0 (3)

where

r̄k =
1
hk

*
tk−1

tk
r~t! dt (4)

and

gj = g~tj! (5)

An integration of the plasma concentration data over each
subinterval [tk−1, tk] yields the area under the curve within
that subinterval:

bjk = H*tj−tk

tj−tk−1
c~t! dt, k # j

0, otherwise
(6)

With Eq. 6, Eq. 3 can be given as follows:

gj = (
k=2

j

r̄kbjk (7)

Equation 7 represents one of the equations in a system of (j
− 1) simultaneous equations which, when solved recursively,
results in a working expression for the average input rate rj:

r̄j =

gj − (
k=2

j−1

r̄kbjk

bjj
(8)

Expressions equivalent or similar to Eq. 8 have been reported
previously (3,8,12). The method has been given the name of
the point-area deconvolution where the point denotes g(t)
and the area denotes the integrated bjj based on c(t). As
stated earlier, the step-size is equated to the sampled interval
in the conventional approach.

An integration of r(t) yields the cumulative absorption
a(t):

aj = a~tj! = (
k=2

j

r̄k ~tk − tk−1! (9)

Piecewise Cubic Interpolation

In Eq. 8, the evaluation of g(t) at tj is achieved by data
interpolation using the piecewise cubic polynomial algorithm
(17). The algorithm, adapted from the one originally devel-
oped by Fritsch-Butland (18), provides a consistent and reli-
able interpolation for numerical integration, yielding area un-
der the curve (AUC) estimates that are less biased than by
the trapezoidal rule. These functions are able to produce in-
terpolations without spurious oscillations. Interpolated func-
tions based on this algorithm are smooth and are constrained
to be differentiable only once at the joints where experimen-
tal data points are located (cubic splines are twice differen-
tiable). The resultant constrained curvature has a rigidity that
falls between that of the conventional trapezoidal, which is
extremely rigid, and cubic splines, which is extremely flexible.
Cubic splines and Lagrange functions (19) are not suitable for
the present application due to their occasional propensity of
producing unexpected oscillations in the presence of experi-
mental errors, generating unreliable AUC values. Linear or

log-linear trapezoidal interpolations are also not suitable for
consistenly yielding biased AUC estimates, depending on the
concavity of the curvature manifested in the data. Examples
of such interpolated profiles are shown in Fig. 1.

Based on the above interpolation algorithm (17), the
function gj between two experimentally observed adjacent
data points (xn−1, yn−1) and (xn, yn) is defined by the following
cubic equation:

gj = yn−1 + ẏn−1 ~tj − xn−1! + pn~tj − xn−1!
2 + qn~tj − xn−1!

3 (10)

where

pn =
1
dn

~3sn − 2ẏn−1 − ẏn!

qn =
1

dn
2~ẏn−1 + ẏn − 2sn!

dn = xn − xn−1

sn =
yn − yn−1

dn

xn−1 < tj # xn

ẏn−1, ẏn 4 slopes of the curve evaluated at xn−1 and xn, re-
spectively. The procedures for selecting these slopes have
been studied and presented in an earlier report (17).

Unit-Impulse Response

In the present application, the unit impulse response is
generally represented by the experimentally observed plasma
concentrations c(t) following i.v. administration. The evalua-
tion of c(t) at the time corresponding to tj of g(t) is achieved
independently by interpolation of the c(t) data using the
above piecewise cubic polynomial algorithm (17), and the bjk

terms shown in Eq. 6 are subsequently obtained by Eq. 11
which is a modified trapezoidal method for numerical inte-
gration (17):

bjk =
hk

2
@c~tj − tk! + c~tj − tk−1!# +

hk
2

12
@ċ~tj − tk! − ċ~tj − tk−1!# (11)

Step-Size of the Stair-Case Input

While it is desirable that pharmacokinetic and biophar-
maceutic studies include a sufficient number of plasma sam-
plings to achieve adequate characterization of the plasma
concentration profile, practical considerations often limit the
number of sampled time points. To maximize the retrievable
kinetic information, the sampled times are often optimally
spaced such that the length of the sampled interval dn is in-
versely, albeit qualitatively, related to the magnitude of the
expected drug input rate and/or the magnitude of the ex-
pected fluctuations of plasma levels. The importance of opti-
mal sampling strategy had been extensively reviewed (20).
Typically, such considerations often lead to sampling times
which are unequally spaced, and some intervals may be much
greater than the step-size hk required to satisfy the approxi-
mation assumption for Eq. 4.

To define the length of the step-size hk, an approach that
is adopted in the present method is to take advantage of the
underlying assumption of the unequal sampling intervals, and
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set hk to equal a fraction of each of the sampled interval dn of
the nonimpulse response data:

hk =
dn

f
(12)

In Eq. 12, f is a working parameter that defines the num-
ber of subdivisions. With Eq. 12, each sampled interval dn is
divided into f-equally spaced subintervals such that the ab-
sorption rate rk is assumed constant within the subinterval.
The subscript parameter j in Eq. 8 is related to the subscript
parameter n of the plasma sampling time as follows:

j 4 f(n − 1) + 1, n 4 2, 3, . . . , N (13)

where N is the total number of experimentally observed
plasma data points.

Since the width of the interpolated subinterval hk is pro-
portional to each of the sampled interval dn, the length of the
subinterval for the bjj term shown in the denominator of Eq.
8 varies with each dn. Based on the assumption that dn will
increase with increasing time post-dosing, hk will also increase
proportionally and the width for bjk at later time points may
potentially exceed closely spaced earlier sampled intervals. In
general, the working parameter f can be chosen to be equal to
or less than the ratio of the largest sampled interval to the
smallest sampled interval in the study:

f #
dN

d2
(14)

This choice often yields an f value in the range of 1–20.

Absorption Rates

Based on the cumulative absorption a(t) of Eq. 9, the
cumulative absorption An at each sampled time xn when tj 4
xn, is:

An 4 aj , n 4 2, 3, . . . , N (15)

For the interior points (n 4 2, 3, . . . , N − 1), piecewise qua-
dratic equations are fitted to the nearest three points (xn−1,
An−1), (xn, An), and (xn+1, An+1), forming a system of 3 linear
equations with 3 unknowns:

An−1 = un + vn xn−1 + wn xn−1
2 (16a)

An = un + vn xn + wn xn
2 (16b)

An+1 = un + vn xn+1 + wn xn+1
2 (16c)

The slope at An, denoted A
.

n, is found by solving the above
equations for un, vn, and wn,

A
.

n 4 vn + 2wnxn (17)

If the computed slope is negative, then it is estimated to be
zero.

The slope at the first sampled time point (n 4 1), A
.

1, is
approximated by the input rate of the first subinterval, r2, and
the slope at the final sampled time point (n 4 N), A

.
N, is

approximated by the input rate of the final sub-interval, rj, as
defined in Eq. 8.

Fig. 1. A comparison of the four interpolated curves passing through 4 time points at (4,159), (6,58), (12,4), and (16, 1). Spurious oscillations
produced by the Lagrange and spline method over the middle time interval are also shown. The semilog plots of the graphs are displayed in
the lower panel.
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The drug input rate Rn at the sampled time xn is esti-
mated by the moving average of the three contiguous slope
values,

Rn 4
1
2
[1
2
(A

.
n−1 + A

.
n) + 1

2
(A

.
n + A

.
n+1)], n 4 2, 3, . . . , N − 1(18)

If the computed rate RN−1 at the sampled time point xN−1 is
negative, then it is estimated to be zero. No constraints are
imposed on Rn at other time points. As indicated in Eq. 18,
the input rates are not computed at the first sampled time
point x1 and the last sampled time point xN. Furthermore,
input rates at the interpolated time points are not computed
due to the imperfection of the numerical algorithm and the
resultant lower reliability of the interpolated gj’s relative to
the directly observed yn’s.

Computation

Computer software has been developed to implement
the above procedures. Results of the experiments are shown
below. The program contains specific subroutines to perform
the following functions: receive the nonimpulse response con-
centration data g(t); receive the unit impulse response con-
centration data c(t); receive the subdivision parameter f;
perform data interpolation n both nonimpulse and impulse
response data and numerical integration; compute the cumu-
lative input An and input rate Rn. The software has been
compiled into a stand-alone program that runs on an IBM
compatible PC in the DOS environment of Windows NT or
98. A modification of the present procedure where the unit
impulse response data are represented by polyexponential
equations has also been developed and implemented. This
modified procedure is described in the Appendix.

Seven data cases were employed to illustrate the present
method. In cases 1–4 (Table I), simulated data based on three
defined absorption functions (Function 1: a first-order decay
type; Function 2: a bipeak mixed drug-release type; and Func-
tion 3: a zero-order controlled-release type) and two unit im-
pulse response functions (i.v. bolus in Data Cases 1–3, and
oral solution in Data Case 4) were used. The nonimpulse
response was represented by computed plasma concentra-

tions following the analytical convolution of the impulse re-
sponse function and the respective absorption function. Func-
tion 3 was tested in the fourth case where the unit impulse
response was represented by plasma concentration data fol-
lowing the administration of an oral solution. Unit impulse
response concentrations in all cases were sampled at 0, 0.1,
0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, and 12 h post-dose; an addi-
tional sample at 0.75 hours was collected in Case 4. Plasma
concentrations following oral administration in Cases 1–3
were sampled at 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 8, 10, and
12 h post-dose; additional samples were collected at 2.5, 3.5,
and 4.5 h in Case 2, and at 7 and 9 h in Case 3. In Data Case
4, the plasma samples were collected hourly for 10 h and at 12
h. Normally distributed random noise corresponding to 5%,
10%, and 15% CV (coefficient of variation) were indepen-
dently added into the simulated impulse response data and
the nonimpulse response data. Ten (10) data sets were gen-
erated at each of the 3 noise levels and for each of the 4 cases.
Each of the 120 paired test data sets was comprised of one set
of the impulse response data and one set of the nonimpulse
response data.

In Data Cases 5 and 6, the present method was applied to
experimentally observed preclinical plasma concentration
data of a fibrinogen receptor antagonist in the dog (1) and
human quindine sustained-release formulation data (21), re-
spectively. In Data Case 7, the present method was compared
to a previously published point-area method (14). The non-
impulse response data included simulated noise-free plasma
concentrations following oral administration (Calculation A),
noise-free concentrations with an abbreviated sampling
scheme (Calculation B), and plasma concentrations contain-
ing +10% and −10% noise at alternating time points (Calcu-
lation C). The computational procedures described in the Ap-
pendix were employed in Data Case 7 since the unit impulse
response in the calculations was represented by a polyexpo-
nential equation as reported in the referenced publicatons
(14).

The above deconvolution analyses were performed with
the parameter f set to equal the ratio (dN/d2) as shown in Eq.
14. To examine the effect of the step-size, the analyses were

Table I. Simulated Absorption Functions Tested

Data
Case Absorption rate functiona,b Unit impulse response

1 Function 1 (first-order decay):
r(t) 4 [ln(2)/2] exp {-[ln(2)t/2]}

Plasma concentration data
following an i.v. bolusd

2 Function 2 (bi-peak biexponential input)c:
r(t) 4 0.7 [exp(−0.45t)−exp(−0.45t/0.55)], 0 ø t < 4
r(t) 4 0.7 [exp(−0.45t)−exp(−0.45t/0.55)] + 0.3 {exp[−0.45(t − 4)]−exp[−0.45 (t − 4)/0.55]}, t ù 4

Plasma concentration data
following an i.v. bolusd

3 Function 3 (zero-order controlled-release):
r(t) 4 0.12, 0 ø t < 6
r(t) 4 0.12[3.52-(t − 6)2]/(3.52), 6 ø t < 9.5
r(t) 4 0, t ù 9.5

Plasma concentration data
following an i.v. bolusd

4 Function 3 (zero-order controlled release): (Same as in Data Case 3) Plasma concentration data
following administration
of an oral solutione

a Parameters for each absorption function are normalized to yield a total cumulative absorption of 1 unit dose.
b Time unit 4 hour.
c 70% dose-release at 0 h; 30% dose-release at 4 h.
d Disposition function for the plasma concentration data: c(t) 4 9exp(−0.8t)+3exp(−0.2t).
e Disposition function for the plasma concentration data: c(t) 4 10exp(−0.5t)−10exp(−2t).
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then repeated in all seven cases without reducing the step-size
(f 4 1).

RESULTS

Simulation Data

Table II lists the computed input rates Rn in Cases 1–4
for the noise-free test data. These results indicate that the
theoretical profiles were well reproduced by the present
method in all 4 cases. There were only minor differences
between the expected and the recovered absorption rates,
which can be attributed mainly to the imperfection of the
numerical algorithm. Figure 2 summarizes results of the test
data containing the simulated noises. On average, the ex-
pected profiles were also well recovered. These results indi-
cate that as the noise in the input data increased from 5% CV
to 15% CV, there was a corresponding increase in the vari-
ability of the output data. Stable and qualitatively similar
estimates for absorption rates were obtained at f 4 1 in all 4
cases (and also in all subsequent cases except for Data Case 6
described below). Smaller step-sizes generally improved the
accuracy and precision of the estimates of cumulative absorp-
tion An. However, the improvements were modest. Finally, as
the bulk of absorption approached completion, the precision
for the computed An increased while the precision for Rn

decreased in all 4 cases.
It should be noted that Eq. 18 assumes the input rates are

continuous and differentiable at all times. For Function 2,
where 30% of the simulated dose was released as a bolus at 4
h, this assumption was poor and resulted in an overestimation
of Rn at 4 h. Similarly for Function 3, where the simulated
dose release completed abruptly at 9.5 h, the assumption was
also poor and the estmated Rn at 9.5 h (by inference from
Table II and Fig. 2) were higher than expected in both Cases
3 and 4.

As shown in Eq. 8, the step size hk has an overriding
effect on the reliability of the bjj term and the corresponding
rate estimates. With larger step sizes, errors associated with

the imperfection of assuming constant input rate within each
subinterval will generally be the predominant factor. With
smaller step sizes, experimental error combined with the im-
perfection of the numerical interpolation algorithm will in-
creasingly become the major factor. While the stability of the
computed Rn is significantly improved with the application of
the moving average algorithm, small step-sizes in the pres-
ence of relatively large noises may still potentially result in
unstable and physically meaningless rate estimates. With
Function 3 where the absorption rate was constant over a 6-h
interval, reducing the step-size in the presence of data noise
was, as expected, not useful. Although the estimated input
rates were remarkably stable for all Case 3 data sets, erratic
and meaningless rate estimates were observed in some of the
Case 4 data sets containing higher noises (10% and 15% CV)
when the step-size was further reduced. The difference be-
tween these two data cases suggests that assay noise would
have greater impact on the stability of the computed rate
estimates if there was a greater resemblance between the time
profile of the impulse response data and that of the nonim-
pulse response data.

Metabolite Formation

Results of Data Case 5 are shown in Table III. These
data were part of that reported previously on the metabolite
formation of a fibrinogen antagonist ester prodrug in the dog
(1). In this example, the nonimpulse response was repre-
sented by the plasma concentrations of the active metabolite
Dc(t) after oral administration of the prodrug, and the im-
pulse response was represented by the plasma concentrations
of the active metabolite Da(t) following intravenous admin-
istration of the active metabolite. The input rate r(t), denoted
Rdrug(t), measured the overall rate of appearance of the active
metabolite in the systemic circulation following oral admin-
istration of the prodrug:

Dc(t) 4 Rdrug(t) * Da(t) (19)

Data shown in Table III are based on normalized dose

Table II. Comparison of the Theoretical Absorption Rate r(t) and Recovered Absorption Rate Rn for the 4 Test Cases Based on Simulated
Noise-Free Plasma Concentrations as the Input Data

Case 1 Case 2 Case 3 Case 4

xn, h r(t), h−1 Rn, h−1 xn, h r(t), h−1 Rn, h−1 xn, h r(t), h−1 Rn, h−1 xn, h r(t), h−1 Rn, h−1

0.25 0.318 0.314 0.25 0.055 0.055 0.25 0.120 0.119 1 0.120 0.124
0.5 0.291 0.292 0.5 0.094 0.089 0.5 0.120 0.120 2 0.120 0.121
0.75 0.267 0.268 0.75 0.121 0.116 0.75 0.120 0.120 3 0.120 0.120
1 0.245 0.241 1 0.137 0.134 1 0.120 0.120 4 0.120 0.120
1.5 0.206 0.209 1.5 0.151 0.145 1.5 0.120 0.120 5 0.120 0.120
2 0.173 0.170 2 0.148 0.145 2 0.120 0.120 6 0.120 0.117
3 0.123 0.128 2.5 0.137 0.135 3 0.120 0.120 7 0.110 0.104
4 0.087 0.091 3 0.121 0.121 4 0.120 0.120 8 0.081 0.074
5 0.061 0.065 3.5 0.105 0.108 5 0.120 0.120 9 0.032 0.035
6 0.043 0.044 4 0.089 0.105 6 0.120 0.116 10 0 0.009
8 0.022 0.026 4.5 0.115 0.111 7 0.110 0.102 12 0

10 0.011 0.013 5 0.121 0.113 8 0.081 0.074
12 0.005 6 0.105 0.096 9 0.032 0.037

8 0.056 0.063 10 0 0.010
10 0.026 0.032 12 0
12 0.011
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and adjusted molecular weight of the prodrug and the active
metabolite. Following oral administration of the prodrug,
there were two pathways that led to the appearance of the
metabolite in the systemic circulation: one was derived from
the systemic conversion of the orally absorbed prodrug; the
other derived from the direct contribution of the absorbed
active metabolite as a result of the presystemic conversion
during the absorption process. The computed Rdrug(t) profile
(Fig. 3), which represents a composite of these two parallel
pathways, would suggest that the formation of Dc(t) was ini-
tially delayed, reached a peak at about 3–4 hours and de-
creased thereafter.

Dosage Form Drug Release

Results of Data Case 6 are summarized in Table IV. In
this example, the unit impulse response c(t) was represented
by the plasma concentrations of quinidine following the ad-
ministration of an oral solution, and the nonimpulse response
g(t) was represented by the plasma concentration data fol-
lowing the administration of a sustained-release tablet (21).
Thus, the input rate Rn is interpreted as the apparent in vivo
release rate of the tablet formulation at the absorption sites

Table III. Estimated Composite Input Rate, Rdrug, of the Active Me-
tabolite in Data Case 5

Time, h Da, nM Dc, nM Rdrug, h−1
Cumulative

Rdrug

0 1546.25a 0
0.25 903.25 NSb

0.5 588.25 1.34 0.0056 0.0013
1 309.13 4.43 0.0118 0.0050
1.5 169.88 9.06 0.0204 0.0120
2 118.25 17.59 0.0291 0.0255
3 49.44 29.71 0.0347 0.0606
4 30.20 34.78 0.0348 0.0983
6 18.49 33.74 0.0301 0.1657
8 11.91 28.03 0.0227 0.2194

12 7.19 17.70 0.2879

Note: The unit impulse response was represented by the plasma con-
centrations of the metabolite Da following intravenous administra-
tion of the metabolite. The nonimpulse response was represented by
the plasma concentrations of the metabolite Dc following oral admin-
istration of the prodrug. Values have been dose-normalized to 0.1
mg/kg of the active metabolite.
a Value obtained by extrapolation prior to the application of decon-

volution analysis.
b No sample.

Fig. 2. Comparison of the theoretical and the recovered absorption rates at each of the three simulated noise levels in Case 1 (A), Case 2 (B),
Case 3 (C), and Case 4 (D). The theoretical absorption rates are shown as the dashed lines. Vertical lines represent mean and one standard
deviation of the results based on 10 paired data sets containing normally distributed random noise for both the nonimpulse response data and
the unit impulse response data. The semilog plots of the absorption rates for Case 1 are shown in the insets. Left panel 4 5% CV; middle panel
4 10% CV; right panel 4 15% CV.
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projected to be equivalent to that of the oral solution. This
application requires the assumption that linear and time-
invariant kinetics apply not only to the disposition of quini-
dine in the systemic circulation, but also to its absorption
processes at the sites where the drug is released from the
dosage form. This example, similar to the simulation Case 4
above, further serves to illustrate the application of the pre-
sent method where the impulse response is composed of
plasma concentration data following a non-intravenous ad-
ministration. Since c(t0) 4 0 at time zero, ġ(t0) was also set to
equal zero during data interpolation. These results suggest
that the apparent drug release from the dosage form was
rapid initially and the overall profile would be best described
to be polyphasic. The cumulative absorption of 0.979 shown
in Table V was comparable to the ratio 0.959 of the computed
AUC values for the SR formulation (8,570 ng ? h/mL) and for
the oral solution (8,934 ng ? h/mL).

In this example, extremely large step-size (f 4 1) re-
sulted in erratic and large fluctuations of the computed drug
release rates at earlier time points, as shown in Table IV.
However, with smaller step-size (Fig. 4), the magnitude of the
fluctuations was substantially decreased and the computed

release rates were generally comparable. The instability of
the computed drug release rates at f 4 1 suggests that the
assumption of a constant rate over the earlier sampled time
intervals (particularly the first interval) was poor, which was
manifested by large decline of the initial drug release rates
computed with the reduced step-sizes. The ruggedness of the
present method is also suggested by the reasonable stability of
computed drug release rates in this example with a modest
reduction in the step-size (f 4 2) and in all other data cases
without reducing the step-size.

Comparative Data

Table V summarizes comparisons of the results in Data
Case 7 and those previously published (14), using the proce-
dures described in the Appendix. With the present method,
improved and stable rate estimates were obtained in all three
calculations and, unlike those results based on the conven-
tional point-area method, no negative rates were generated in
the presence of alternating 10% data noise.

DISCUSSION AND CONCLUSIONS

The above examples indicate that the reliability of the
point-area method can be improved with the combined ap-
plication of the moving average algorithm and the piecewise
cubic polynominal functions. Allowing the step size to be
adjustable in the method has the potential of yielding more
meaningful drug input rate estimates. The stability of the re-
sultant rate estimates, given the large variety of profiles ex-
amined in the above test data cases, also illustrated the flex-
ibility of the method as a useful deconvolution tool. The com-
puted absorption profiles may provide potential information
for further investigation of the input processes. To date, no
method has been reported on the use of such piecewise poly-
nominal functions in representing both the impulse and non-
impulse response data.

An important issue often encountered in numerical de-
convolution is the presence of noise in the experimental data.

Table IV. Estimated In Vivo Drug Release Rates Rn(t) of the Sustained Release (SR) Tablet Formation, Using Plasma Concentrtaions
following the Administration of the Tablet and an Oral Solution (21)

Time,
h

Plasma Concentration, ng/mL In Vivo Release, h−1

Cumulative Rn (f 4 20)Oral Solutiona SR Tableta Rn (f 4 20) Rn (f 4 1)

0 0 0 −
0.5 685.6 243.3 0.973 0.317 0.181
1.0 923.9 242.7 0.143 0.060 0.233
2.0 897.0 313.9 0.109 0.120 0.362
3.0 677.2 347.1 0.098 0.097 0.462
4.0 620.3 376.0 0.082 0.085 0.550
6.0 399.8 451.1 0.056 0.066 0.734
8.0 381.4 367.0 0.035 0.033 0.764

10.0 298.1 364.1 0.025 0.027 0.848
12.0 242.2 326.7 0.015 0.016 0.878
24.0 97.1 142.4 0.006 0.005 0.960
36.0 40.1 62.4 0.001 0.001 0.974
46.0 25.9 36.2 0.979

Note: This application required the assumption of linear and time-invariant kinetics for the disposition of quinidine and absorption processes
at the sites of drug release. Large step-size (f 4 1) resulted in the drug release rates that were erratic and unrealistic over the initial sampled
time intervals.
a Dose 4 300 mg.

Fig. 3. Composite appearance rate (left panel) and cumulative rate
(right panel) of the active metabolite following orally administered
prodrug in the dog (Data Case 5).
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The input rates are particularly more sensitive than cumula-
tive rates to such error. Unlike smoothing functions such as
polyexponentials, interpolation functions do not filter out the
noise and must reproduce the colocated experimental values.
As a result, data-interpolation based deconvolution methods
are inherently more sensitive to experimental noise than
those based on data-smoothing algorithms, and fluctuations
in input data will be more prominently reflected in the final
output data. However, data smoothing before the deconvo-
lution analyses generally requires great care to prevent the
introduction of bias into the data. With the present method,

the prior data smoothing operations are not required. The
smoothing is performed on the slope of the computed cumu-
lative absorption, and the difficulties generally associated
with numerical differentiation are resolved by the application
of the moving average algorithm. Obviously, the present
method would not be applicable in situations where the fluc-
tuations of the true input rates are such that they are not
compatible with the assumptions of the moving average algo-
rithm.

With the availability of modern analytical technology
and instrumentation, there has been a significant improve-
ment in the quality of assay data in recent years. In the pres-
ence of experimental errors at levels commonly encountered
in validated assay procedures (22), the application of the pres-
ent method has been shown to yield satisfactory absorption
rate profiles. In actual practice, where the precise magnitudes
of assay noise and input rate profiles are not known, prelimi-
nary analysis of the data with larger-step sizes (e.g., f 4 1),
followed by additional analysis with smaller step-sizes has
been found to serve as a practical guide in judging the accept-
ability of the computed rate estimates.

In conclusion, the point-area deconvolution analysis is
one of the preferred approaches in evaluating pharmacoki-
netic and biopharmaceutic data when it is undesirable to as-
sume the functional forms of the input processes. The present
method provides improved performance and flexibility of this
approach. Software implementing the computational proce-
dures is available upon request.

APPENDIX

In a linear and time-invariant disposition system, plamsa
concentration data c(t) following a bolus intravenous dose are
often represented by a polyexponential function of the form:

c~t! = (
i=1

M

aie
−lit (A1)

Fig. 4. Drug release rate (upper panel) and cumulative release pro-
files (lower panel) of quinidine sustained release formulation relative
to the oral solution (21). These results suggests the apparent drug
release from the formulation was polyphasic. Varying the subdivision
parameter from f 4 20 (d) to f 4 5 (h) or 2 (n) yielded comparable
profiles. Without reducing the step-size (f 4 1; Table V), significant
oscillations in the release profile were noted over the first 2 h post-
dose.

Table V. Comparison of Results Based on the Present Method and a Previously Reported Point-Area Method (14)

Time, h

Absorption Rate Rn, fraction of dose per houra

Theoretical

Calculation A Calculation B Calculation C

Ref. 14b Present work Ref. 14b Present work Ref. 14b Present work

0.25 0.583 0.635 0.580 0.571 0.594
0.5 0.490 0.534 0.483 0.705 0.515
1 0.347 0.412 0.350 0.491 0.374 0.270 0.334
2 0.173 0.245 0.206 0.246 0.211 0.343 0.187
3 0.087 0.123 0.105 0.123 0.104 0.018 0.103
4 0.043 0.061 0.053 0.155 0.053
5 0.022 0.030 0.027 0.043 0.042 −0.048 0.033
6 0.011 0.015 0.013 0.091 0.027
7 0.005 0.007 0.007 0.011 0.012 0.000 0.011
8 0.003 0.003 0.003 −0.037 0.001
9 0.001 0.002 0.002 0.034 0.000

10 0.001 0.000 0.002 −0.024

a Calculation A was based on noise-free nonimpulse response data at the indicated time points; Calculation B was based on the noise-free data
with the abbreviated sampling scheme; Calculation C was identical to Calculation A except that the nonimpulse response data contained
+10% and −10% noise at alternating time points. In all calculations, the unit impulse response was represented by a biexponential equation:
5exp(−0.5t)+5exp(−0.2t).

b Mean absorption rate over the preceding sampled interval.
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where M is the number of the exponential terms. In such a
case, the piecewise cubic polynomial functions are not applied
to interpolate the impulse response data; the bjk terms shown
in Eq. 11 are obtained by analytical integration of Eq. A1:

bjk = (
i=1

M ai

li
@e−li~tj−tk−1! − e−li~tj−tk!# (A2)

In comparison to the use of the polynomial interpolation of
i.v. data, the use of a polyexponential function in Eq. A2
provides an implicit smoothing and a reduction of the effect
of experimental errors on the i.v. data.
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